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Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and
increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk
for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food
cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/
or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or ‘wanting’). We also assessed diet-
vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity
displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that
developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened ‘wanting’ was not due to individual
differences in the hedonic impact (‘liking’) of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal ‘hot-
spots’ that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in
cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of
obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food
diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation.
Neuropsychopharmacology advance online publication, 15 April 2015; doi:10.1038/npp.2015.71
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INTRODUCTION

Pavlovian cues associated with palatable foods (food cues),
like the smell of fresh-baked brownies, carry incentive
salience that makes the cues attractive, reinforcing, and able
to trigger urges to eat. For example, in humans, food cues
can increase ratings of desire to eat and the amount of food
consumed (Fedoroff et al, 1997; Soussignan et al, 2012).
Similarly, in rodents, food cues can elicit approach, reinforce
operant responding (eg, conditioned reinforcement), and
increase food consumption (Holland and Petrovich, 2005).
However, no studies have examined cue-induced motivation
in preclinical models of obesity. The recent global rise in
obesity heightens the need to understand the neurobiological
mechanisms governing these processes, particularly in
susceptible individuals.
Clinical data suggest that some people may attribute more

incentive salience (ie, motivational value) to food cues than

others, and consequently be more likely to overeat and
become obese (see Dagher, 2009 for review). For example,
food cues more robustly enhance the desire to eat (Fedoroff
et al, 1997; Tetley et al, 2009) and more strongly activate the
nucleus accumbens (NAc) and caudate putamen (CPu) in
obese people (Rothemund et al, 2007; Stoeckel et al, 2008),
even prior to the development of obesity (Stice et al, 2010;
Demos et al, 2012). In rodents, Pavlovian autoshaping
reveals individual differences in motivated attraction to food
cues (see Robinson and Flagel, 2009 for review). In
autoshaping procedures, some rats (sign-trackers) are highly
attracted to approach a discrete cue that predicts sugar
reward, whereas other rats are instead attracted to the place
(goal) where sugar is delivered (goal-trackers). To date, no
studies have examined individual differences in attraction
(approach) or motivation (conditioned reinforcement) for
food cues in models of obesity, or determined the effect of
diet-induced obesity on motivational properties of food cues,
despite evidence that obese people are hyperresponsive to
food cues (Rothemund et al, 2007; Stoeckel et al, 2008; Stice
et al, 2010; Demos et al, 2012). Therefore here, we used a
moderately fatty ‘junk-food’ diet that produces obesity only
in a subset of susceptible rats (Levin et al, 1997) to examine
both pre-existing and diet-induced alterations in approach
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and conditioned reinforcement behavior to a sucrose-
paired cue.
Neurobiologically, evidence implicates dopamine and

opioid systems in the NAc and CPu in obesity (Shin et al,
2011; Volkow et al, 2013b). However, it is unclear to what
extent these neurochemical systems are influenced by the
consumption of palatable foods vs by the development
of obesity. Therefore, we also examined striatal dopamine
and mu opioid receptor mRNA and cross-sensitization to
amphetamine in rats susceptible vs resistant to ‘junk-food’
diet-induced obesity. Importantly, our approach allows us to
distinguish differences due to junk-food diet exposure alone,
vs those associated with obesity. Finally, we measured the
hedonic response to oral sucrose to determine whether
individual differences in incentive salience (‘wanting’) for
Pavlovian cues were driven by differences in the hedonic
impact (‘liking’) of sucrose.

MATERIALS AND METHODS

Subjects

Adult male Sprague-Dawley rats (70–75-days old) were
purchased from Harlan (Exp. 1) or bred in house (Exp. 2, 3).
Procedures were approved by The University of Michigan
Committee on the Use and Care of Animals. Rats had free
access to food and water unless explicitly noted. Body weight
was measured twice per week.

Experiment 1: Are there Pre-Existing Differences in
Conditioned Approach Behavior in Rats Susceptible to
Obesity Under Ad Lib Conditions?

Autoshaping. Detailed procedures have been reported
(Anselme et al, 2013). During training (8 sessions), the
presentation of a retractable, illuminated lever accompanied
by an auditory tone (CS+; 80 dB; 8 s) was followed by
delivery of a sucrose pellet (25 CS+/UCS pairings, VI: 30–
90 s). A second, non-illuminated control lever (CS− )
remained present throughout the entire session. No beha-
vioral responses were required to receive a sucrose pellet.
This established the CS+ as a predictive cue for sucrose
delivery (‘sucrose cue’; N= 30 rats). After initial approach
training, all rats were transferred to the ‘junk-food’ diet in
order to determine individual susceptibility to obesity.

Junk-food diet. The ‘junk-food’ diet was a mash composed
of: Ruffles original potato chips (40 g), Chips Ahoy original
chocolate chip cookies (130 g), Jiff smooth peanut butter
(130 g), Nesquik powdered chocolate flavoring (130 g),
powdered Lab Diet 5001 (200 g; 19.6% fat, 14% protein,
58% carbohydrates; 4.5 kcal/g), and water (180 ml). Ingre-
dients were combined in a food processor. These foods
contain a rich mix of sugars, salt, and fats, and were chosen
as palatable representatives of what are commonly called
‘junk-foods’ implicated in human obesity. Diet composition
was closely matched to kcal/g of standard lab chow (Lab Diet
5001: 4.5% fat, 23% protein, 48.7% carbohydrates; 4 kcal/g),
and based on previous studies establishing individual
differences in susceptibility to weight gain and subsequent
metabolic syndrome (Levin et al, 1997). K-means clustering
based on weight gain after 1 month of free access to the junk-

food diet was used to identify individuals susceptible
(JF-Gainer) vs resistant to diet-induced obesity (JF-Non-Gainer).

Experiment 2A: Does Food Restriction During Training
Amplify Motivation for a Sucrose Cue in Susceptible
Rats?

Autoshaping. Rats were food restricted throughout the
initial autoshaping training (90%± 0.5% free-feeding body
weight; N= 23). After initial training, rats were returned to
ad lib standard chow for 1 week prior to giving some rats
access to the junk-food diet. Chow (N= 10) and junk-food
(N= 13) groups were counter balanced such that initial
weight and age did not differ.

Post junk-food testing. Testing began after 3 months on the
junk-food diet. Extinction testing was identical to autoshaping
training except that no sucrose was given (25 CS+ presenta-
tions). Four additional retraining sessions followed (25 CS
+/sucrose presentations) after which conditioned reinforce-
ment for the sucrose cue was assessed in a single session
(30min; FR1). Responses in one port (active) presented the
sucrose cue (3 s), but no sucrose pellets were delivered. Nose-
pokes in another port (inactive) produced no outcome. The
difference in magnitude of responding between ports
indicates magnitude of conditioned reinforcement.

Leptin and insulin. Fasted blood samples were collected
into tubes containing EDTA (1.6 mg/ml, Sarstedt) after
15 weeks on the diets and centrifuged (1000g; 10 min, 4 °C)
to isolate plasma. Samples were analyzed using a Multiplex
magnetic bead panel with Luminex detection (EMD Milli-
pore) for insulin and leptin levels.

Experiment 2B: Does Prolonged Access to the Junk-Food
Diet Produce Cross-Sensitization to Amphetamine?

Locomotor activity. Amphetamine-induced locomotor ac-
tivity was evaluated in a single session after 155 days on the
diets (saline: 1 ml/kg; d-amphetamine: 0.32, 1.0, 3.2, and
5.6 mg/kg/ml, i.p.) in standard testing chambers equipped
with an array of photocell beams.

Experiment 2C: Does Junk-Food Diet Alter Dopamine
and Opioid Systems in Rats Susceptible to Obesity?

In situ hybridization. Three weeks after amphetamine
exposure, brains were collected (Chow N= 10, JF-Gainer
N= 5, JF-Non-Gainer N= 7) for in situ hybridization of
dopamine receptors (D1; M35077, D2; M36831), tyrosine
hydroxylase (TH; M10244), the dopamine transporter (DAT;
M80233), and the Mu opioid receptor (L22455; (Mansour
et al, 1990; Thompson et al, 1993)). Sections beginning
+5.20 mm and ending − 9.30 mm from bregma (Paxinos and
Watson, 2007) were collected and thaw-mounted onto poly-
L-lysine-coated slides. In situ hybridization was performed as
previously described (Kabbaj et al, 2000). Autoradiographic
images were digitized (Microtek Scan Maker 1000XL;
Fontana, CA) and optical density was determined (Image J;
NIH; Bethesda, MD). Templates were used for each region of
interest. Adjacent sections probed for TH mRNA were used
to identify the VTA.
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Experiment 3: Are there Pre-Existing and/or Diet-
Induced Differences in Hedonic Responses to Sucrose in
Rats Susceptible to Obesity?

Taste reactivity. Hedonic responses to sucrose were mea-
sured using taste reactivity procedures (Ho and Berridge, 2013)
in separate rats (N= 12). Briefly, rats were anesthetized
(100mg/kg ketamine HCL, 7mg/kg xylazine, and 0.04mg/kg
atropine sulfate, IP) and intra-oral guide cannulae were
implanted bilaterally (Ho and Berridge, 2013). Rats were
postoperatively treated with chloramphenicol (60mg/kg, SC)
and carprofen (5mg/kg, SC). After recovery from surgery
(7 days), rats were handled and habituated to the taste reactivity
procedure (3 days) and then orofacial reactions to sucrose oral
infusions (1, 3 and 9% w/vol) were evaluated. Rats were tested
both prior to and after 1 month of free access to the junk-food
diet, and after acute food deprivation (10 h). Positive, aversive,
and neutral patterns of orofacial reactions to sucrose
were scored using frame-by-frame digital analysis (Berridge,
2000; Ho and Berridge, 2013) conducted by a scorer blind
to experimental conditions (Observer software, Noldus,
Netherlands; see (Ho and Berridge, 2013) for additional details).

Statistics. For comparison of three or more groups
repeated measures ANOVAs were used followed by post-

tests (Prizm6; GraphPad, San Diego, CA). When JF-Gainer
and JF-Non-Gainer groups did not differ, they were
collapsed and compared with Chow-Fed controls. For
comparisons between two groups, two-tailed paired and
un-paired t-tests were used.

RESULTS

Experiment 1

Individual susceptibility to junk-food diet-induced weight
gain. JF-Gainer (N= 7) and JF-Non-Gainers (N= 23)
showed similar weight gain when given ad lib access to
standard lab chow (Figure 1a, weeks 1–3) but individual
differences in susceptibility to weight gain were revealed
when rats were given free access to the junk-food diet
(Figure 1a, weeks 4–7). This was due in part to increased
junk-food intake in JF-Gainers vs JF-Non-Gainers (~10–15%
higher in JF-Gainers than JF-Non-Gainers; data not shown).
Initial weight did not predict subsequent weight gain
(average weight JF-Gainer= 322 g± 4 g; JF-Non-Gainer=
325 g± 2 g; data not shown).

Rats susceptible to obesity show enhanced conditioned
approach prior to junk-food diet. During Pavlovian

Gainers show enhanced conditioned approach prior to junk-food diet
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Figure 1 Junk-Food Gainers show enhanced conditioned approach prior to junk-food diet exposure. (a) Average (± SEM) weekly weight gain prior to
(week 1–3) and during (week 4–7) junk-food diet exposure. (b) Average conditioned approach behavior (total CS lever presses and food-cup entries during
the CS period) across autoshaping sessions prior to junk-food diet exposure is greater in Junk-Food Gainers vs Junk-Food Non-Gainers. (c) Responding during
the inter-trial-interval (ITI; ie, in the absence of the sucrose cue) decreased across sessions and did not differ between groups after acquisition. (d) Average
(± SEM) sign-tracking (CS lever presses) and (e) goal-tracking (food-cup entries during the CS period) across autoshaping sessions conducted prior to junk-
food diet exposure (main effect of group *po0.05).
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conditioning, rats subsequently identified as JF-Gainers
showed greater cue-triggered approaches to the sucrose
cue (sign-tracking) and to the food cup goal-tracking
than JF-Non-Gainers (Figure 1b: group × time interaction
F(7,196)= 2.24, po0.04). The rate of acquisition for condi-
tioned approach learning did not differ between groups in
the first 3 days of training (Figure 1b, sessions 1–3) but once
established, the magnitude of conditioned approaches to the
sucrose-predictive cue was significantly greater in JF-Gainers
than JF-Non-Gainers (Figure 1b, sessions 4–8; main effect of
group F(1,28)= 5.54, p= 0.02). In addition, consistent with
associative control by the Pavlovian sucrose cue (CS+), food-
cup entries during the inter-trial interval (ie, when the cue
was absent) did not differ between groups after acquisition
(Figure 1c, sessions 4–8: main effect of group and session ×
group interaction n.s.), and decreased across training in both
groups (Figure 1c: main effect of session F(7,196)= 22.85,
po0.0001). Thus, the higher responding by JF-Gainers from
session 4 to 8 was truly cue-triggered, and did not occur
without the sucrose cue.

Elevated cue-triggered approaches on sessions 4–8 was
contributed both by approaches of sign-trackers to the
sucrose lever cue (individuals having⩾ 66% of total
responses directed towards the CS+ lever; JF-Gainer N= 4,
JF-Non-Gainer N= 15) and by approaches of goal-trackers to
the food-cup during cue presentation (individuals having⩾
66% of total responses directed towards the food cup during
cue presentation, JF-Gainer N= 3, JF-Non-Gainer N= 6).
Two rats in the JF-Non-Gainer group were intermediates
showing similar degrees of sign-tracking and goal-tracking
behavior. Specifically, sign-tracking grew stronger across
days in JF-Gainers (group × session interaction F(7,119)=
3.91, po0.0007), while goal-tracking was generally
enhanced in JF-Gainers vs JF-Non-Gainers (main effect of
group F(1,56)= 6.98, p=0.01). Combining these cue-triggered
conditioned approach targets together (Figure 1b), a robust
increase in Pavlovian attraction to sucrose-predictive stimuli in
JF-Gainers over JF-Non-Gainers was revealed, suggesting that
JF-Gainers had enhanced cue-triggered attraction to both
sucrose-predictive stimuli prior to the development of obesity:
the CS+ lever cue that was correlated with sucrose delivery and
the dish location where sucrose would actually appear. In
addition, on the first 3 days of training (sessions 1–3) food-cup
entries during the inter-trial interval were higher in JF-Gainers
than JF-Non-Gainers (Figure 1c sessions 1–3: main effect of
group F(1,28)= 5.07, p= 0.03), possibly reflecting initial attrac-
tion to the sugar-paired dish before rats had learned the full
prediction contingency between CS+ lever and sucrose
delivery.

Experiment 2

Conditioned approach behavior when trained food restricted
was examined in a separate set of rats prior to exposure to
junk-food. Weight prior to, after, and during food restriction
did not differ between rats subsequently identified as JF-
Gainers or JF-Non-Gainers (Supplementary Figure 1), nor
did initial weight predict subsequent susceptibility to
weight gain.

Junk-food diet-induced weight gain is accompanied by
metabolic dysfunction. As above, only some susceptible

rats gained significant weight when given free access to the
junk-food diet, while others remained the same weight as
Chow-Fed rats (Figure 2a; main effect of group, F(1,11)=
58.03, po0.001; group × time interaction, F(27,297)= 12.53,
po0.0001; Chow-Fed N= 10; JF-Non-Gainer N= 8; JF-
Gainer N= 5). Even within the first week, JF-Gainers gained
significantly more weight than either JF-Non-Gainers or
Chow-Fed rats (Figure 2a lower panel; F(2,20)=
19.09, po0.001; JF-Gainers vs JF-Non-Gainers, t11= 6.05,
po0.0001 and JF-Gainers vs Chow-Fed, t13= 4.63,
po0.0005), despite no difference in initial weight at the
onset of the junk-food diet (Figure 2a lower panel). JF-
Gainers also showed significant increases in plasma leptin
and fasted insulin levels after 15 weeks on the junk-food diet
compared with JF-Non-Gainers (Figure 2a Lower panels;
Leptin: F(2,19)= 14.22, po0.001; JF-Gainers vs JF-Non-
Gainers: t11= 3.9, po0.01, JF-Gainer vs Chow-Fed:
t12= 4.7, po0.001; Insulin: F(2,20)= 4.22, po0.05; JF-Gainer
vs JF-Non-Gainer: t11= 2.3, po0.04, and JF-Gainer vs Chow-
Fed: t13= 2.67, po0.02). Increased leptin levels are consistent
with increased fat mass, and increased fasted insulin levels
are indicative of metabolic dysfunction (Kennedy et al,
1997). In contrast, leptin and insulin levels were similar in
JF-Non-Gainers and Chow-Fed groups.

Food restriction masks pre-existing differences in approach
to the sucrose cue. When food restricted, conditioned
approach no longer differed between groups (Figure 2b).
This was likely due to a ceiling effect introduced by food
restriction, as the overall magnitude of responding was much
greater in food restricted groups in Experiment 2 (133± 4.9)
than in free-access groups of Experiment 1 (48.2-68± 3.3-
1.8). Furthermore, whether rats were trained food restricted
or ad lib, individual differences in the tendency towards sign-
tracking or goal-tracking behavior did not differ between JF-
Gainers and JF-Non-Gainers (Figure 2e).

Junk-food gainers show conditioned reinforcement, but
junk-food non-gainers do not. After 3 months of ad lib
exposure to the junk-food diet, approach to the sucrose cue
during extinction and willingness to work for the sucrose cue
alone during instrumental conditioned reinforcement were
measured in rats from Experiment 2. Extinction was similar
between groups and JF-Gainers vs JF-Non-Gainers did not
differ during re-acquisition of autoshaping (data not shown).

During conditioned reinforcement testing, JF-Gainers and
Chow-Fed rats nose-poked to earn presentations of the
sucrose cue alone (in the absence of any actual sucrose),
whereas JF-Non-Gainers did not (Figure 2f: main effect of
port F(1,20)= 10.1, po0.01; Active vs Inactive JF-Gainer:
t4= 2.5, po0.04, Chow-Fed: t9= 2.6, po0.04; JF-Non-Gainer:
t7= 0.47, p= 0.33). Thus, the sucrose cue acquired incentive
value (ie, supported instrumental responding) in JF-Gainers
and in Chow-Fed rats, but not in JF-Non-Gainers.

Junk-food diet induces cross-sensitization to amphetamine,
regardless of weight gain. Amphetamine-induced locomo-
tion did not differ between JF-Gainers and JF-Non-Gainers
(Figure 3). However, regardless of weight gain, rats fed the
junk-food diet showed stronger amphetamine-induced
locomotion (ie, sensitization) compared with Chow-Fed

Individual differences in diet induced obesity
MF Robinson et al

4

Neuropsychopharmacology



rats (Figure 3: main effect of group F(2,15)= 4.66, po0.03;
group × dose interaction, n.s.; Chow-Fed vs Junk-Food: main
effect of group F(1,21)= 10.88, po0.01). Time course data for
individual amphetamine doses are shown in Supplementary
Figure 2 (all statistics for Supplementary Data are given in
the figure captions).

Junk-food and obesity-related differences in dopamine and
opioid receptor mRNA expression. There were no correla-
tions between mRNA expression and weight gain (Chow

N= 10, JF-Gainer N= 5, JF-Non-Gainer N= 8). Further,
although differences in sign-tracker and goal-tracker mRNA
expression have been previously reported (Huys et al, 2014),
there were not enough goal-trackers to evaluate differences
here (GT N= 2).

Junk-food decreases D2 mRNA expression, regardless of
obesity. D2 mRNA did not differ between JF-Gainers and
JF-Non-Gainers in any brain region. However, in the NAc,
D2 mRNA expression was significantly decreased in the
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rostral core and rostral shell in all rats that had eaten junk-
food for 6 months compared with the Chow-Fed group,
regardless of weight gain (Figure 4a: Core, t20= 1.82, po0.05;
Shell, t20= 2.08, po0.05). D2 mRNA expression did not
differ in caudal NAc core or caudal shell (Figure 4a), nor in
any portion of the CPu (data not shown).

D1 mRNA expression is greater in junk-food non-gainers.
In contrast to D2 mRNA differences, D1R mRNA expression
was greater in rostral CPu, rostral NAc core, and rostral shell
in JF-Non-Gainers compared with both JF-Gainers and
Chow-Fed rats (Figure 4b: main effect of group across
regions; Chow-Fed vs JF-Non-Gainer, F(1,15)= 6.15, po0.03;
JF-Gainer vs JF-Non-Gainer, F(1,11)= 12.45, po0.01). No
differences in D1R mRNA expression were found in caudal
CPu, NAc core or shell. In the VTA, TH mRNA was lower
in JF-Gainers vs JF-Non-Gainers (Figure 4c left panel:
t10= 2.85, po0.02), D2R mRNA expression did not differ
between groups, and trends towards decreased DAT mRNA
expression between Junk-Food and Chow-Fed rats did not
reach statistical significance (Figure 4c, DAT mRNA:
t20= 1.75, p= 0.09).

Mu receptor (MuR) mRNA is lower in junk-food gainers vs
junk-food non-gainers. MuR mRNA expression did not
differ between JF-Non-Gainers and Chow-Fed rats in any
region examined (Figure 5). However, significantly lower
expression of MuR mRNA in rostral, but not caudal, NAc
shell was found in JF-Gainers vs JF-Non-Gainers (Figure 5a:
t11= 1.8, po0.05). Similarly, lower MuR mRNA levels were
found in rostral dorsal-medial CPu (Figure 5b: t11= 2.54,
po0.03) and in rostral central CPu (Figure 5d: t11= 2.86,
po0.02) in JF-Gainers vs JF-Non-Gainers. In contrast, MuR
mRNA expression in all other quadrants of rostral CPu (dorsal-
lateral, ventral medial, and ventral lateral) and NAc core
(rostral/caudal) did not differ between groups (Figure 5c, e–g).

Experiment 3

Hedonic responses to oral sucrose prior to and after 1 month
of junk-food diet exposure, and after acute food restriction
were measured in a separate set of rats (JF-Gainer N= 6, JF-
Non-Gainer N= 5).

Exposure to a junk-food diet dampens hedonic sensitivity
to sucrose concentration. Again, the junk-food diet
produced obesity in susceptible rats that was accompanied
by increased leptin levels in JF-Gainers (Supplementary
Figure 3). Before junk-food exposure, positive oral-facial
responses reflecting hedonic impact increased monotonically
in all rats as sucrose concentrations increased (Figure 5h,
Pre-JF: main effect of sucrose concentration, F(2,54)= 5.52,
po0.01; pre 1% vs pre 9% sucrose, t9= 4.018, po0.01).
This initial hedonic response to sucrose did not differ
between JF-Gainers and JF-Non-Gainers. By contrast,
after 1 month on the junk-food diet, concentrations of
sucrose no longer differed in the number of positive
hedonic reactions (Figure 5h Post-JF: main effect of sucrose
concentration, F(2,54)= 0.01, p= 0.988; post 1% vs post 9%
sucrose, t9= 0.591, p= 0.57). Further, positive responses to
sucrose were generally higher in the JF-Non-Gainers than
JF-Gainers after junk-food diet exposure (Figure 5h Post-JF
and Supplementary Figure 4). In addition, although acute
food restriction increased positive hedonic responses in both
groups, JF-Gainers still showed less strong positive reactions
than JF-Non-Gainers and sensitivity to sucrose concentra-
tion remained blunted (Supplementary Figure 4D and E).

DISCUSSION

Motivation for Food Cues

Food cues often trigger the desire to eat, especially in obese
individuals (Kessler, 2009; Tetley et al, 2009; Stice et al, 2010;
Demos et al, 2012; Soussignan et al, 2012). In fMRI studies,
food cues more strongly activate the NAc and CPu in obese
people (Rothemund et al, 2007; Stoeckel et al, 2008), even
prior to the development of obesity (Stice et al, 2010; Demos
et al, 2012). Here, we found that prior to weight gain, rats
subsequently identified as susceptible to diet-induced obesity
(JF-Gainers) showed stronger conditioned approach than rats
resistant to diet-induced obesity (JF-Non-Gainers). Enhanced
cue-triggered approach was not due to faster learning by JF-
Gainers, as initial acquisition speed did not differ (Figure 1b;
sessions 1–3), but to greater levels of cue-triggered attraction
to sucrose-associated stimuli once the CS+-sucrose associa-
tion was learned (Figure 1b; sessions 4–8). This enhanced
cue-triggered incentive motivation in JF-Gainers manifested
both as higher sign-tracking approaches to CS+ lever, and
higher goal-tracking approaches to the dish where sucrose
was delivered (the food-cup goal; but only when the CS+ lever
was present, and not in its absence). This dual attraction to
sucrose-associated stimuli may be analogous to enhanced
human cue-triggered attraction both to predictive cues as a
blinking sign for donuts, and to the cupboard or counter
where the treat may actually be obtained.
Beyond physical attraction to cues, JF-Gainers with access

to junk-food were also willing to work on a new instrumental
response (nose-pokes) to obtain presentations of the
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sucrose cue by itself (CS+ lever insertion without actual
sucrose), whereas JF-Non-Gainers did not work for
the CS+ (Figure 2f). These data are consistent with enhanced
incentive motivation attributed to sucrose cues in rats
susceptible to obesity. Finally, differences in cue-triggered
motivation (Figure 1b) were not due to initially enhanced
‘liking’ for sucrose taste, as hedonic responses to sucrose
prior to junk-food diet did not differ between subsequently
identified JF-Gainer and JF-Non-Gainers (Figure 5h), and
later exposure to junk-food diet only tended to dampen
sensitivity to sucrose concentration, rather than increase it.
Suppression of hedonic reactivity may be consistent with a
previous study using lick rate to measure hedonic impact
(Shin et al, 2011), though suppressed lick rates were seen at
lower sucrose concentrations (o0.01% vs 1–9% used here).
In summary, rats susceptible to diet-induced obesity show

greater conditioned approach to Pavlovian sucrose cues prior
to obesity, and enhanced motivation to obtain a sucrose-
paired cue after junk-food diet exposure and the develop-
ment of obesity. To our knowledge, this is the first time that
enhanced motivation for food cues has been captured in an
animal model of obesity that might relate to the enhanced
sensitivity to palatable food cues observed in some obese
people.

Junk-Food Diet Induces Cross-Sensitization to
Amphetamine and Decreases in D2R mRNA Regardless
of Obesity

Regardless of weight-gain, junk-food diet exposure induced
cross-sensitization to amphetamine-induced locomotion,
and decreases in D2R mRNA expression in the NAc, in
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both JF-Gainers and JF-Non-Gainers. Cross-sensitization to
repeated psychostimulant exposure has been reported after
binge-fast cycles of sucrose ingestion and after exposure to
high-fat foods without the development of obesity (Avena
et al, 2008; Baladi et al, 2012, though see also Davis et al,
2008). However, junk-food-induced cross-sensitization here
was evident at the first amphetamine exposure, and did not
appear to require prior binge-fast cycles. Our results suggest
that decreases in NAc D2R mRNA can be a consequence
of eating the junk-food diet, regardless of weight gain or
individual predisposition. Thus, differences in D2R mRNA
expression alone are not likely to be sufficient to explain
individual differences in cue-induced motivation. The ability
of prolonged junk-food exposure to induce cross-
sensitization to amphetamine and reduce D2R mRNA here
might have been due to repeated activation of mesolimbic

brain systems by eating palatable food (eg, elevations in
striatal dopamine and endogenous opioids; (Geiger et al,
2009)), or as a satiety-related downregulation response to
post-ingestion signals from metabolism of sugary and fatty
food. This explanation may also apply to previous reports of
downregulation of striatal D2R levels by a palatable ‘cafeteria
style diet’ in non-obese rodents ((Alsio et al, 2010) and
Figure 4c, Extended H vs Extended L in (Johnson and Kenny,
2010)). Downregulation as a consequence of palatable food
exposure or overconsumption is also consistent with a
clinical report that low D2R levels may be reversed by
effective weight-loss surgery in obese individuals that curtails
food consumption (Steele et al, 2010, but see also de Weijer
et al, 2011; Dunn et al, 2010).
In contrast to D2R mRNA, striatal D1R mRNA expression

was higher in JF-Non-Gainers than in JF-Gainers or Chow-Fed
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rats. This is consistent with a previous study that found lower
NAc D1R mRNA expression in obese vs non-obese rats given
a sugary diet (Alsio et al, 2010). However, based on our
comparison to Chow-Fed rats, this difference may be due to
elevated D1R mRNA levels in rats that are resistant to diet-
induced obesity, and not to lower levels in obesity-prone rats.
Whether this difference in D1R mRNA is pre-existing vs diet-
induced requires the ability to identify obesity-resistant and
susceptible rats without diet manipulation. None-the-less,
taken together our data suggest that the balance of D1 vs D2
receptor-mediated transmission may differ substantially in
Junk-Food-Gainers vs Junk-Food-Non-Gainers.

Mu Receptor mRNA Expression

JF-Gainers had lower levels of MuR mRNA compared with
JF-Non-Gainers in two discrete regions of the striatum: a
rostral NAc shell ‘liking hot-spot’ in which MuR activation
enhances positive orofacial reactions to sucrose taste, and a
dorsal-medial CPu ‘wanting hot-spot’ in which activation
of MuR induces intense consumption of palatable foods
(DiFeliceantonio et al, 2012). Although we cannot conclu-
sively rule out the contribution of pre-existing differences,
our taste-reactivity data suggest that lower MuR mRNA
expression may be a consequence of junk-food diet
exposure and/or the development of obesity in susceptible
rats. First, hedonic responses to sucrose were identical in
JF-Gainers and JF-Non-Gainers prior to junk-food diet
exposure (Figure 5h), suggesting that neural ‘liking’
systems did not initially differ. Second, after junk-food diet
exposure, JF-Gainers showed lower hedonic reactions
(‘liking’) to sucrose, as would be expected if MuR-mediated
transmission were decreased and may be related to
excessive alliesthesia accompanying obesity. Given that
endogenous enkephalin levels rise rapidly at the onset of
palatable food consumption in the dorsal-medial CPu
‘wanting hot-spot’, consequent downregulation of MuR
mRNA in this region could be due to repeated activation
of MuR by palatable food consumption (Lenard et al, 2010;
Shin et al, 2010). Thus, decreased MuR mRNA levels in
both striatal regions may be a consequence of junk-food
diet consumption and obesity in Junk-Food-Gainers. This
interpretation is also consistent with progressive decreases in
striatal reactivity to palatable foods as people gain additional
weight (Stice et al, 2010).

Summary

Debate exists concerning the mechanisms underlying
individual differences in eating and obesity. Some have
proposed that pre-existing hypoactivity of mesocorticolimbic
systems produces ‘reward deficiency’ that drives over-eating
(Johnson and Kenny, 2010; Parylak et al, 2011). By contrast,
others propose that opposite hyperreactivity of these systems
drives elevated cue-triggered motivation to eat (Davis et al,
2009; Gearhardt et al, 2011; Stice et al, 2012; Volkow et al,
2013a). Both hypotheses recognize that individual differences
are important (Berthoud, 2012); indeed differences in
sensitivity to leptin, insulin, and post-meal satiety have been
associated with susceptibility to diet-induced obesity (Levin
et al, 2004; Clegg et al, 2005; Cottone et al, 2007). Although
further studies are needed to distinguish pre-existing and

diet/obesity-induced differences in mesolimbic function, our
results clearly demonstrate that some aspects of mesolimbic
function are influenced primarily by exposure to palatable
foods regardless of weight gain (D2R mRNA and
amphetamine-induced locomotion), whereas other aspects
(incentive-motivation, MuR, D1R mRNA) are influenced
by individual differences that likely represent interactions
between pre-existing and experience-induced plasticity.
Furthermore, our data suggest that pre-existing increases in
food-cue-induced motivation may contribute to the devel-
opment and persistence of obesity in susceptible individuals
(see also Burger and Stice, 2014). This pre-existing sensitivity
to food cues may be further exacerbated by palatable food
consumption and/or physiological alterations that accom-
pany obesity. This pattern is similar to incentive-
sensitization that may underlie drug addiction (Robinson
and Berridge, 2008; Vezina and Leyton, 2009). Although
addiction labels must be used cautiously, and important
differences between drugs and food must be considered (eg,
drug addicts may seek abstinence, whereas obese individuals
strive for controlled consumption), the potential overlap and
distinctions in underlying neural mechanisms remains an
interesting and promising avenue for research and treatment
development (Avena et al, 2008; Kenny, 2011; Volkow et al,
2013b).
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